Thème 1 : Organisation et transformations de la matière
Partie 1 : Décrire la constitution et les états de la matière

Séquence 3 : Mélanges et corps purs

Objectifs de la séquence

<table>
<thead>
<tr>
<th>Savoir</th>
<th>Savoir-faire</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Savoir que l’eau est un solvant de certains solides et de certains gaz</td>
<td>• Concevoir et réaliser des expériences pour caractériser des mélange : dissolution de divers solides et liquides</td>
</tr>
<tr>
<td>• Savoir que l’eau et certains liquides sont miscibles</td>
<td>• Réaliser des démarches d’investigations</td>
</tr>
<tr>
<td>• Savoir définir les termes suivants : dissolution, miscibilité, solubilité, solution, soluté, solvant, solution saturée, soluble, insoluble, liquides miscibles et non miscibles</td>
<td>• Pratiquer une démarche expérimentale en lien avec la conservation de la masse lors d’une dissolution</td>
</tr>
<tr>
<td>• Savoir que la masse totale se conserve au cours d’une dissolution</td>
<td>• Estimer expérimentalement une valeur de solubilité dans l’eau</td>
</tr>
<tr>
<td>• Savoir faire la distinction entre la dissolution et fusion</td>
<td>• Mettre en œuvre un protocole pour récupérer un gaz par déplacement d’eau</td>
</tr>
<tr>
<td>• Savoir que l’eau peut contenir des gaz dissous comme le dioxyde de carbone</td>
<td>• Réaliser le test de reconnaissance du dioxyde de carbone par l’eau de chaux et le schématiser</td>
</tr>
<tr>
<td>• Savoir que l’eau de chaux permet de révéler la présence de dioxyde de carbone</td>
<td></td>
</tr>
<tr>
<td>• Savoir faire la différence entre mélange et corps purs</td>
<td></td>
</tr>
</tbody>
</table>

Pour bien réviser :
- Connaître les « Savoirs » et appliquer les « Savoirs faire » que tu trouves dans ton cours
- Lire les cours et les essentiels p 50-51 et p 86 (partie 1) du manuel scolaire
- Revoir les deux TP et les deux démarches d’investigations
- Faire exercices n° 1, 2, 3, 5, 6, 8 p 55 + n° 9, 10 11, 13 p 56 + n° 20, 23, 24 p 57 + n° 3, 4, 5 p 91 + n° 11, 13 p 92 + n° 18, 19, 20 p 93

Introduction :
Toutes les boissons contiennent de l’eau et des substances dissoutes dans l’eau : ce sont des mélange. Pour rendre ces boissons plus attrayantes et favoriser leur vente, les fabricants ajoutent parfois du gaz. Dans cette séquence, nous allons nous intéresser à ces différents mélange et voir comment récupérer et identifier le gaz contenu dans l’eau pétillante.

1. Liquide ou solide dans l’eau : Peut-on dissoudre n’importe quel liquide ou solide dans l’eau ?

TP 1 : Dissolution des liquides et des solides dans l’eau

1) Mélanger des liquides à de l’eau

Question :
Peut-on dissoudre n’importe quel liquide dans de l’eau ?

Hypothèse(s) (je pense que ... car...) :

Liste du matériel :
- 2 tubes à essais + support
- 2 bouchons
- 1 pissette d’eau
- sirop et huile

Protocole (ce que tu fais) : Si tu rencontres des difficultés, tu peux t’aider de l’activité 3 p 49
Schémas de l’expérience (crayon à papier, règle et légendes):

Observations (ce que tu as vu):
- Tube avec sirop : Après agitation, on observe que le sirop s’est mélangé à l’eau.
- Tube avec huile : Après agitation, on observe que l’huile ne s’est pas mélangée à l’eau.

Interprétations (mise en relation de ce que tu sais avec ce que tu as vu):
- Définitions :
 - Homogène : On ne distingue pas les constituants du mélange.

L’eau et le sirop est un mélange homogène.
L’eau et l’huile est un mélange hétérogène.

Conclusion (réponse à la question de départ):
- Non, on ne peut pas dissoudre n’importe quel liquide dans de l’eau.

Conclusion :
- Lorsqu’on mélange un liquide à de l’eau, on obtient un mélange aqueux.
- Aqueux : qui contient de l’eau (vient du latin aqua, qui signifie « eau »).
- Selon la nature du liquide, on peut avoir :
 - un mélange homogène : on peut dire que l’eau et le liquide sont miscibles (ex : eau + sirop).
 - un mélange hétérogène : on peut dire que l’eau et le liquide sont non-miscibles (ex : eau + huile).
- Un corps pur est constitué uniquement d’espèces chimiques identiques, c’est le cas de l’eau alors qu’un mélange en contient plusieurs, c’est le cas d’un sirop à l’eau.

2) Mélanger des solides à de l’eau

Question :
- Peut-on dissoudre n’importe quel solide dans de l’eau ?

Hypothèse(s) (Je pense que ... car...):

Liste du matériel :
- 2 bêchers
- 1 spatule
- 1 pissette d’eau
- 1 agitateur
- sucre et semoule

Protocole (ce que tu fais) : Si tu rencontres des difficultés, tu peux t’aider de l’activité 3 p 49

Schémas de l’expérience (crayon à papier, règle et légendes):
Observations (ce que tu as vu):

Bécher avec sucre: Après agitation, on observe que le sucre n’est plus présent, il s’est mélangé à l’eau.

Bécher avec semoule: Après agitation, on observe que la semoule est présente, elle ne s’est pas mélangée à l’eau.

Interprétations (mise en relation de ce que tu sais avec ce que tu as vu):

L’eau et le sucre est un mélange homogène.

L’eau et la semoule est un mélange hétérogène.

Conclusion (réponse à la question de départ):

Non, on ne peut pas dissoudre n’importe quel solide dans de l’eau.

Conclusion:

- Lorsqu’on mélange un solide à de l’eau, on obtient un mélange aqueux.
- Selon la nature du solide, on peut avoir:
 - un mélange homogène : cela s’appelle une solution aqueuse. Le solide est soluble dans l’eau : on l’appelle le soluté. L’eau est appelée le solvant (Exemple : eau + sucre ou eau + sel).
 - Un soluté peut être solide, liquide ou gazeux alors qu’un solvant ne peut être que liquide mais il est en plus grande quantité que le soluté. La dissolution d’un soluté dans un solvant est appelée une solution.
 - un mélange hétérogène : Le solide est insoluble dans l’eau (Exemple : eau + semoule).

II. Que devient la masse lors d’une dissolution ?

1) **Masse d’une solution**

Démarche d’investigation 1 : Dissolution et masses

Question:

Julie et Samuel vont faire une balade. Ils décident d’emporter avec eux du café...

Pour alléger mon sac à dos, je vais dissoudre le sucre dans le café pour gagner de la place et alléger mon sac à dos.

Ce n’est pas possible Julie, ton sac à dos ne va pas s’alléger car le sucre ne peut pas disparaître !

Qui a raison ?

Hypothèse(s) (je pense que ... car...):

Liste du matériel :

- 1 bécher
- 1 coupelle
- Café dans de l’eau
- 1 balance
- 1 spatule
- 1 agitateur
- Sucre

Protocole (ce que tu fais):

1) Allumer la balance, placer la coupelle sur a balance puis appuyer sur « TARE » pour enlever la masse de la coupelle. La balance doit afficher « 0 ».
2) Placer du sucre dans la coupelle puis mesurer la masse du sucre.
3) Mettre le café + eau dans le bécher.
4) À l’aide de la balance, peser le café + bécher.
5) Dissoudre le sucre dans le café. Pour cela, ôter le récipient de la balance et ne pas toucher à celle-ci !
6) Peser le café + le sucre.
Schémas des expériences (crayon à papier, règle et légendes):

Mesure du sucre

![Diagramme du sucre]

Mesure du café

![Diagramme du café]

Mesure du mélange

![Diagramme du mélange]

Observations (ce que tu as vu):

Masse du sucre \(m_{\text{sucre}} = \ldots \ldots \ldots \ g \)

Masse du mélange \(m_{\text{mélange}} = \ldots \ldots \ldots \ g \)

Masse du café \(m_{\text{café}} = \ldots \ldots \ldots \ g \)

Interprétations (mise en relation de ce que tu sais avec ce que tu as vu):

Remplir l’espace par = ou < ou >:

\[m_{\text{mélange}} = m_{\text{sucre}} + m_{\text{café}} \]

Conclusion (réponse à la question de départ):

D’après l’interprétation, nous pouvons dire que c’est Samuel qui a raison.

Le sac à dos de Julie ne va pas s’alléger si on dissout le sucre dans le café.

Conclusion:

Lors de la dissolution d’un soluté dans un solvant, il y a conservation de la masse totale.

2) **Solubilité d’un solide dans l’eau**

TP 2 : Solubilité du sel dans l’eau

Question:

Quelle masse de sel un litre d’eau peut-il dissoudre ?

Hypothèse(s) (je pense que ... car...):

Liste du matériel:

- 1 bêcher de 100 mL
- 1 coupelle
- 1 spatule
- 1 agitateur
- 1 balance
- 1 pissette d’eau
- 1 éprouvette graduée
- sel

Protocole (ce que tu fais):

1) Allumer la balance, placer la coupelle sur a balance puis appuyer sur « TARE » pour enlever la masse de la coupelle. La balance doit afficher « 0 ».
2) Placer du sel dans la coupelle pour avoir une masse de 5 grammes.
3) A l’aide de la pissette d’eau et de l’éprouvette graduée, placer 50 mL d’eau dans le bêcher.
4) Verser le contenu de la coupelle de sel dans le bêcher.
5) A l’aide de l’agitateur, agite le mélange.
6) Reproduire l’expérience en rajoutant plusieurs fois 5,0 g de sel en n’oubliant pas d’agiter à chaque pesée.
Schémas des expériences (crayon à papier, règle et légendes):

Persée de la masse de sel

Bécher après ajout des 5 g de sel

Bécher après ajout de suffisamment de sel

Observations (ce que tu as vu):
1. Complète ce tableau de mesures en répondant par oui ou non:

<table>
<thead>
<tr>
<th>Masse de sel (en g)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le sel est-il visible dans l'eau ?</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
</tbody>
</table>

2. Après agitation, qu'arrive-t-il au sel pour une petite quantité ajoutée ?
Pour une petite quantité ajoutée, le sel se dissout dans l'eau.

3. Quelle est la masse maximale de sel que l'on peut complètement dissoudre dans 50 mL d'eau ?
La masse maximale de sel que l'on peut dissoudre dans 50 mL d'eau est 15 grammes.

Interprétations (mise en relation de ce que tu sais avec ce que tu as vu):
4. Lors de cette dissolution, quel est le soluté et le solvant ?
Le soluté est le sel et le solvant est l'eau.

5. A l'aide de la question 3, détermine la masse maximale de sel que l'on peut complètement dissoudre dans 1 litre d'eau sachant que 1 litre = 1000 mL = 20 x 50 mL.
Soit m la masse maximale de sel dissous dans 1 litre :
m = 15 x 20 = 300 g
Donc la masse maximale de sel dissous dans 1 litre est égale à 300 g.

6. Solubilité : quantité maximale de soluté qui peut être dissous dans 1 litre de solution.
A partir de la définition de la solubilité, déterminer la valeur de la solubilité du sel dans l'eau (l'unité est le g/L).
La valeur de la solubilité du sel dans l'eau est égale à 300 g/L.

7. Une solution est dite saturée lorsqu'elle ne peut plus dissoudre de soluté dans celle-ci.
A la fin de notre expérience, a-t-on obtenu une solution saturée ? Justifie.
A la fin de notre expérience, la solution obtenue est saturée car on ne peut plus dissoudre de soluté dans l'eau.

Conclusion (réponse à la question de départ):
La masse de sel que peut dissoudre un litre d'eau est égale à 300 grammes.

Conclusion :
- La masse maximale de soluté qui peut être dissous dans un litre d'eau est appelée la solubilité du soluté dans l'eau. Son unité est le gramme/Litre noté g/L.
- Lorsque l'on dissout un solide dans l'eau, on observe qu'à partir d'une certaine quantité, le solide ne se dissout plus : la solution est dite saturée. La solubilité est atteinte.
3) Distinction dissolution - fusion

- Montrer animation physikos : « Dissolution, dilution et fusion » (Chapitre 6 du site)

Conclusion :

Dissolution : on dissout un solide dans un liquide (Exemple : le sucre se dissout dans l’eau).

Fusion : on fait fondre un solide qui devient un liquide. C’est un changement d’état (Exemple : sans eau, le sucre va fondre à partir de 170°C).

III. Gaz dans l’eau : Comment récupérer et identifier un gaz dans de l’eau pétillante ?

Démarche d’investigation 2 : Récupérer et identifier un gaz contenu dans une eau pétillante

1) **Récupérer le gaz**

Question :

Madame Fish change l’eau de son aquarium, elle met ses poissons dans une petite bassine et nettoie son aquarium. Problème, il y a une coupure d’eau !

Elle prend une bouteille de Perrier, la décape et vide son contenu dans l’aquarium, avant de placer Némo et ses petits.

Horreur, peu après, elle constate que ses poissons ne vont pas bien.

Madame Fish pense que ce sont les bulles de Perrier qui posent problème. Elle doit réagir vite !

Il faut que tu t’aides donc tu dois lui expliquer comment faire pour récupérer les bulles de gaz de la bouteille dans un tube à essai.

Liste du matériel :

- 1 tube à essai
- 1 gros bouchon percé
- 1 élévateur
- 1 cristallisoir
- 1 tubé à dégagement
- 1 bouteille de Perrier
- 1 agitateur magnétique avec 1 barreau aimanté

Protocole (ce que tu fais) :

On met de l’eau dans le cristallisoir et dans le tube à essai. On place le cristallisoir sur l’élévateur puis on retourne le tube à essai dans le cristallisoir en maintenant l’extrémité du tube avec son doigt pour ne pas perdre d’eau. On place l’extrémité du tube à dégagement sous le tube à essai. On met dans la bouteille de Perrier un barreau aimanté puis on place la bouteille sur un agitateur magnétique. On met le bouchon percé sur l’autre extrémité du tube à dégagement et on visse le bouchon sur la bouteille.

Schéma de l’expérience (crayon à papier, règle et légendes) :

Conclusion :

On a recueilli un gaz présent dans la bouteille de Perrier qui se nomme le dioxyde de carbone.

On a récupéré le gaz par la méthode du déplacement d’eau.
2) Identifier le gaz

Identification :
Tu viens de récupérer le gaz et nous souhaiterions l'identifier. On sait qu'un produit chimique appelé eau de chaux se trouble en présence de ce gaz.

Liste du matériel :
- 1 tube à essai contenant le gaz
- 1 bouchon
- eau de chaux

Protocole (ce que tu fais) :
On met quelques gouttes d'eau de chaux dans le tube à essai puis on agite en fermant le tube à essai avec un bouchon.

Schémas des expériences (crayon à papier, règle et légendes) :

![Schéma de l'expérience]

Observations (ce que tu as vu) :
On peut voir que l'eau de chaux s'est troublée en présence de ce gaz.

Interprétations (mise en relation de ce que tu sais avec ce que tu as vu) :
D'après les SVT, on sait que l'eau de chaux se trouble en présence de dioxyde de carbone. Or on vient de voir dans notre expérience que l'eau de chaux s'est troublée donc on peut affirmer que le gaz contenu dans l'eau pétillante est du dioxyde de carbone.

Conclusion :
Le gaz récupéré est du dioxyde de carbone.
Il a été mis en évidence grâce au trouble formé en présence de l'eau de chaux.

Conclusion :
- Une eau pétillante contient un gaz appelé le dioxyde de carbone.
- On peut récupérer ce gaz grâce à la méthode du déplacement d'eau.
- On peut mettre en évidence ce gaz, le dioxyde de carbone grâce à l'eau de chaux qui se trouble en sa présence.